
# ANCHOR INSTALLATION INFORMATION<sup>1</sup>

| SETTING INFORMATION                                     | SYMBOL            | UNITS        | NOMINAL ANCHOR DIAMETER          |                                  |             |            |  |  |  |  |  |
|---------------------------------------------------------|-------------------|--------------|----------------------------------|----------------------------------|-------------|------------|--|--|--|--|--|
| SET TING INFORMATION                                    | SIMBOL            | UNIIS        | <sup>1</sup> / <sub>4</sub> inch | <sup>3</sup> / <sub>8</sub> inch | $1/_2$ inch |            |  |  |  |  |  |
| Nominal Diameter                                        | $d_0$             | in. (mm)     | 1/4 (6.4)                        | 3/8 (9.5)                        | 1/2 (       | 12.7)      |  |  |  |  |  |
| Drill Bit Diameter                                      | $d_{bit}$         | in. (mm)     | 1/4                              | 3/8                              | 1/          | /2         |  |  |  |  |  |
| Minimum Hole Depth                                      | $h_0$             | in. (mm)     | 2 (51)                           | 2 5/8 (67)                       | 2 3/4 (70)  | 4 (102)    |  |  |  |  |  |
| Minimum Base Plate Clearance Hole Diameter <sup>2</sup> | $d_c$             | in. (mm)     | 5/16 (7.5)                       | 7/16 (11.1)                      | 9/16 (      | (14.3)     |  |  |  |  |  |
| Installation Torque (Carbon Steel)                      | T <sub>inst</sub> | ft-lbf (N-m) | 8 (11)                           | 30 (41)                          | 80 (        | 108)       |  |  |  |  |  |
| Embedment Depth                                         | $h_{nom}$         | in. (mm)     | 1 3/4 (44)                       | 2 3/8 (60)                       | 2 1/2 (64)  | 3 3/4 (95) |  |  |  |  |  |
| Effective Embedment Depth                               | h <sub>ef</sub>   | in. (mm)     | 1 1/2 (38)                       | 2 (51)                           | 2(51)       | 3 1/4(83)  |  |  |  |  |  |
| Minimum Edge Distance                                   | C <sub>min</sub>  | in. (mm)     | 1 3/4 (44)                       | 2 1/4 (57)                       | 6 1/2 (165) | 4 (102)    |  |  |  |  |  |
| Minimum Spacing                                         | S <sub>min</sub>  | in. (mm)     | 2 1/4 (57)                       | 3 3/4 (95)                       | 7 1/4 (184) | 5 (127)    |  |  |  |  |  |
| Minimum Concrete Thickness                              | $h_{min}$         | in. (mm)     | 4 (102)                          | 4 (102)                          | 5 (127)     | 6 (152)    |  |  |  |  |  |

For **SI:** 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

<sup>1</sup>The information presented in this table must be used in conjunction with the design requirements of ACI 318 Appendix D. The clearance must comply with applicable code requirements for the connected element.





### FIGURE 1—ANCHOR

# FIGURE 2—ANCHOR (INSTALLED)

| Length ID<br>marking on stud            | С     | D     | Е     | F     | G     | Н     | Ι     | J     | K   | L     | М     | N     | 0     | Р     | Q   | R  | S  | Т  | U  | V  | w  |
|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-----|-------|-------|-------|-------|-------|-----|----|----|----|----|----|----|
| Length of anchor<br>$\min \ge$<br>(in.) | 2 1⁄2 | 3     | 3 1⁄2 | 4     | 4 1⁄2 | 5     | 5 1⁄2 | 6     | 6 ½ | 7     | 7 1⁄2 | 8     | 8 1⁄2 | 9     | 9 ½ | 10 | 11 | 12 | 13 | 14 | 15 |
| Length of anchor<br>max <<br>(in.)      | 3     | 3 1⁄2 | 4     | 4 1⁄2 | 5     | 5 1⁄2 | 6     | 6 1⁄2 | 7   | 7 1⁄2 | 8     | 8 1⁄2 | 9     | 9 1⁄2 | 10  | 11 | 12 | 13 | 14 | 15 | 16 |

#### LENGTH IDENTIFICATION SYSTEM (CARBON STEEL AND STAINLESS STEEL ANCHORS)

|                                                                       | SWMDOL                |                                    | NOMINAL ANCHOR DIAMETER                           |                                  |                             |                 |  |  |  |  |  |
|-----------------------------------------------------------------------|-----------------------|------------------------------------|---------------------------------------------------|----------------------------------|-----------------------------|-----------------|--|--|--|--|--|
| CHARACTERISTIC                                                        | SYMBOL                | UNITS                              | <sup>1</sup> / <sub>4</sub> inch                  | <sup>3</sup> / <sub>8</sub> inch | <sup>1</sup> / <sub>2</sub> | inch            |  |  |  |  |  |
| Anchor Category                                                       | 1,2 or 3              | -                                  |                                                   |                                  |                             |                 |  |  |  |  |  |
| Embedment Depth                                                       | $h_{nom}$             | in. (mm)                           | 1 3/4 (44)                                        | 2 3/8 (60)                       | 2 1/2 (64)                  | 3 3/4 (95)      |  |  |  |  |  |
| S                                                                     | teel Strength in Te   | nsion (ACI 318                     | <b>D.5.1</b> )                                    |                                  |                             |                 |  |  |  |  |  |
| Specified Yield Strength (Carbon Steel)                               | $f_{ya}$              | psi (N/mm <sup>2</sup> )           | 50,000 (344)                                      | 50,000 (344)                     | 50,00                       | 0 (344)         |  |  |  |  |  |
| Specified Tensile Strength (Carbon Steel)                             | $f_{uta}$             | psi (N/mm <sup>2</sup> )           | 75,000 (517)                                      | 75,000 (517)                     | 75,00                       | 0 (517)         |  |  |  |  |  |
| Effective Tensile Stress Area                                         | $A_{se}$              | in <sup>2</sup> (mm <sup>2</sup> ) | 0.0220 (14.2)                                     | 0.0531(34.3)                     | 0.1018 (65.7)               |                 |  |  |  |  |  |
| Tension Resistance of Steel (Carbon Steel)                            | N <sub>sa</sub>       | lbf (kN)                           | 1,650 (7.33)                                      | 3,982 (17.7)                     | 7,635 (34)                  |                 |  |  |  |  |  |
| Strength Reduction Factor-Steel Failure <sup>2</sup>                  | $\Phi_{sa}$           | -                                  | 0.75                                              | 0.75                             | 0                           | .75             |  |  |  |  |  |
| Concret                                                               | e Breakout Strengt    | h in Tension (A                    | CI 318 D.5.2)                                     | •                                |                             |                 |  |  |  |  |  |
| Effective Embedment Depth                                             | $h_{ef}$              | in. (mm)                           | 1 1/8(29)                                         | 1 1/2(38)                        | 1 7/8 (48)                  | 3 1/4 (83)      |  |  |  |  |  |
| Critical Edge Distance                                                | C <sub>ac</sub>       | in. (mm)                           | 2 3/4                                             | 4                                | 5                           | 6               |  |  |  |  |  |
| Effectiveness Factor-Uncracked Concrete                               | kuncr                 | -                                  | 24(10)                                            | 24(10)                           | 24                          | (10)            |  |  |  |  |  |
| Strength Reduction Factor-Concrete<br>Breakout Failure <sup>3</sup>   | $arPsi_{cb}$          | -                                  | 0.65                                              |                                  |                             | .65             |  |  |  |  |  |
| Pu                                                                    | ll-Out Strength in T  | Fension (ACI 31                    | 18 D.5.3)                                         |                                  |                             |                 |  |  |  |  |  |
| Pull-Out Resistance Uncracked Concrete $(f'_c = 2,500 \text{ psi})^5$ | N <sub>pn,uncr</sub>  | lbf (kN)                           | N/A                                               | 2,870<br>(12.8)                  | 3,220<br>(14.3)             | 5,530<br>(24.6) |  |  |  |  |  |
| Strength Reduction Factor-Pullout Failure <sup>6</sup>                | $\Phi_p$              | -                                  | 0.65                                              | 0.65                             | 0.65                        |                 |  |  |  |  |  |
| For Sl: 1 inch = 25.4mm, 11bf = 4.45N, 1 lb/in = 0.175 N/m            | m, 1 psi = 0.00689 MP | a = 0.00689 N/mn                   | $n^2$ , 1 in <sup>2</sup> = 645 mm <sup>2</sup> . | , 1 lb/in = 0.175 N              | V/mm.                       |                 |  |  |  |  |  |

#### ANCHOR CHARACTERISTIC TENSION STRENGTH DESIGN INFORMATION<sup>1</sup>

<sup>1</sup> The information presented in this table must be used in conjunction with the design requirements of ACI 318 Appendix D.

<sup>2</sup> The tabulated value of  $\Phi_{sa}$  applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used. If the load combinations of Section 1909.2 of the UBC or ACI 318 Appendix C are used, the appropriate value of  $\Phi_{sa}$  must be determined in accordance with ACI 318 D.4.5. The <sup>3</sup>/<sub>8</sub> inch, <sup>1</sup>/<sub>2</sub> inch and <sup>5</sup>/<sub>8</sub> inch diameter anchors are ductile steel elements as defined in ACI 318 D.1.

<sup>3</sup> The tabulated value of  $\Phi_{cb}$  applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are satisfied. For installations where complying supplementary reinforcement can be verified, the  $\Phi_{cb}$  factors described in ACI 318 D.4.4 for Condition A are allowed. If the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4 for Condition A are allowed. If the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4 for Condition A are satisfied, the appropriate value of  $\Phi_{cb}$  must be determined in accordance with ACI 318 D.4.4(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of  $\Phi_{cb}$  must be determined in accordance with ACI 318 D.4.5.

<sup>4</sup> As described in Section 4.1.3 of this report, N/A (Not Applicable) denotes that pullout resistance is not critical and does not need to be considered. <sup>5</sup> The characteristic pull-out resistance for greater concrete compressive strengths may be increased by multiplying the tabular value by

 $(f_c^{\prime}/2,500)^{0.5}$ . <sup>6</sup> The tabulated value of  $\Phi_p$  or  $\Phi_{eq}$  applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are satisfied. Condition B applies where supplementary reinforcement is not provided or where pullout strength governs. For installations where complying supplementary reinforcement can be verified, the  $\Phi$  factors described in ACI 318 D.4.4 for Condition A are allowed. If the load combinations of ACI 318 Appendix C are used, appropriate value of  $\Phi$  must be determined in accordance with ACI 318 D.4.5.

|                                                                  | SVMDOI             |                                    | NOMI                             | NOMINAL ANCHOR DIAMETER          |                      |           |  |  |  |  |  |
|------------------------------------------------------------------|--------------------|------------------------------------|----------------------------------|----------------------------------|----------------------|-----------|--|--|--|--|--|
| CHARACTERISTIC                                                   | SYMBOL             | UNITS                              | <sup>1</sup> / <sub>4</sub> inch | <sup>3</sup> / <sub>8</sub> inch | $^{1}/_{2}$ i        | nch       |  |  |  |  |  |
| Anchor Category                                                  | 1,2 or 3           | -                                  |                                  |                                  |                      | -         |  |  |  |  |  |
| Embedment Depth                                                  | $h_{nom}$          | in.                                | 1 3/4 (44)                       | 2 3/8 (60)                       | 2 1/2 (64)           | 3 3/4 (95 |  |  |  |  |  |
| Steel Str                                                        | ength in Shear (A  | ACI 318 D.6.1)                     |                                  |                                  |                      |           |  |  |  |  |  |
| Specified Yield Strength for Shear (Carbon Steel)                | $f_{ya}$           | psi (N/mm²)                        | 50,000 (344)                     | 50,000 (344                      | ) 50,00              | 00 (344)  |  |  |  |  |  |
| Specified Tensile Strength for Shear (Carbon Steel)              | $f_{uta}$          | psi (N/mm²)                        | 75,000 (517)                     | 75,000 (517)                     | 00 (517) 75,000 (51  |           |  |  |  |  |  |
| Effective Shear Stress Area                                      | $A_{se}$           | in <sup>2</sup> (mm <sup>2</sup> ) | 0.0220 (14.2)                    | 0.0531(34.3                      | ) 0.101              | 8 (65.7)  |  |  |  |  |  |
| Shear Resistance of Steel (Carbon Steel)                         | $V_{sa}$           | lbf (kN)                           | 1105 (4.9)                       | 2,668 (11.9)                     | 2,668 (11.9) 5,115 ( |           |  |  |  |  |  |
| Strength Reduction Factor-Steel Failure <sup>2</sup>             | $arPsi_{sa}$       | -                                  | 0.65                             | 0.65                             | C                    | .65       |  |  |  |  |  |
| Concrete Break                                                   | out Strength in S  | hear (ACI 318                      | <b>D.6.2</b> )                   |                                  | •                    |           |  |  |  |  |  |
| Nominal Diameter                                                 | $d_0$              | in.                                | 1/4 (6.4)                        | 3/8 (9.5)                        | 1/2 (                | 12.7)     |  |  |  |  |  |
| Load Bearing Length of Anchor in Shear                           | $l_e$              | in.                                | 1 1/4(32)                        | 1 7/8(48)                        | 2(                   | 51)       |  |  |  |  |  |
| Strength Reduction Factor-Concrete Breakout Failure <sup>3</sup> | $arPsi_{cb}$       | -                                  | 0.7                              | 0.7                              | 0                    | .7        |  |  |  |  |  |
| Concrete Pryc                                                    | out Strength in Sh | ear (ACI 318                       | D.6.3)                           |                                  |                      |           |  |  |  |  |  |
| Coefficient for Pryout Strength                                  | $k_{cp}$           | -                                  | 2                                | 2                                | ,                    | 2         |  |  |  |  |  |
| Strength Reduction Factor-Concrete Pryout Failure <sup>4</sup>   | $arPsi_{cp}$       | -                                  | 0.7                              | 0.7                              | 0                    | .7        |  |  |  |  |  |

#### ANCHOR CHARACTERISTIC SHEAR STRENGTH DESIGN INFORMATION<sup>1</sup>

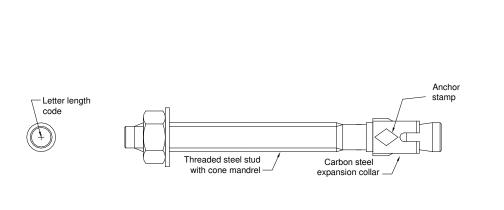
25.4mm, 1 lbf = 4.45 N, 1 psi = 0.00689 MPa = 0.00689 N/mm<sup>2</sup>, 1 in<sup>2</sup> = 645 mm<sup>2</sup>.

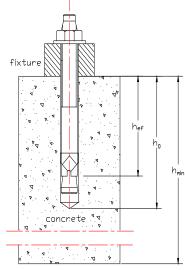
<sup>1</sup> The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D.

<sup>2</sup> The tabulated value of  $\Phi_{sa}$  applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are satisfied. If the load combinations of ACI 318 Appendix C are used, the appropriate value of  $\Phi_{sa}$  must be determined in accordance with ACI 318 D.4.5. The <sup>3</sup>/<sub>8</sub> inch, <sup>1</sup>/<sub>2</sub> inch and <sup>5</sup>/<sub>8</sub> inch diameter anchors are ductile steel elements as defined in ACI 318 D.1.1.

<sup>3</sup> The tabulated value of  $\Phi_{cb}$  applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are satisfied. Condition B applies where supplementary reinforcement is not provided or where pryout strength governs. For installations where complying supplementary reinforcement can be verified, the  $\phi$  factors described in ACI 318 D.4.4 for Condition A are allowed. If the load combinations of Section 1605.2.1 of the IBC or ACI 318 9.2 are used and the requirements of ACI 318 D.4.4 for Condition A are satisfied, the appropriate value of  $\Phi$  must be determined in accordance with ACI 318 D.4.4(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of  $\Phi$  must be determined in accordance with ACI 318 D.4.5.

The tabulated value of  $\Phi_{cp}$  applies when both the load combinations of Section 1605.2.1 of the IBCor ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are satisfied. Condition B applies where supplementary reinforcement is not provided or where pryout strength governs. For installations where complying supplementary reinforcement can be verified, the  $\Phi$  factors described in ACI 318 D.4.4 for Condition A are allowed. If the load combinations of ACI 318 Appendix C the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.5.





# ANCHOR INSTALLATION INFORMATION<sup>1</sup>

| SETTING INFORMATION                                     | SYMBOL           | UNITS        | NOMINAL ANCHOR DIAMETER       |             |                             |             |  |  |  |  |  |
|---------------------------------------------------------|------------------|--------------|-------------------------------|-------------|-----------------------------|-------------|--|--|--|--|--|
| SETTING INFORMATION                                     | SIMBOL           | UNITS        | <sup>5</sup> / <sub>8</sub> i | inch        | <sup>3</sup> / <sub>4</sub> | inch        |  |  |  |  |  |
| Nominal Diameter                                        | $d_0$            | in. (mm)     | 5/8 (                         | 15.9)       | 3/4                         | (19)        |  |  |  |  |  |
| Drill Bit Diameter                                      | $d_{bit}$        | in. (mm)     | 5                             | /8          | ()<br>()                    |             |  |  |  |  |  |
| Minimum Hole Depth                                      | $h_0$            | in. (mm)     | 3 3/4<br>(95)                 | 5<br>(127)  | 4 1/4<br>(108)              | 6<br>(152)  |  |  |  |  |  |
| Minimum Base Plate Clearance Hole Diameter <sup>2</sup> | $d_c$            | in. (mm)     | 11/16                         | (17.5)      | 13/16                       |             |  |  |  |  |  |
| Installation Torque (Carbon Steel)                      | Tinst            | ft-lbf (N-m) | 100 (136)                     |             | 120 (163)                   |             |  |  |  |  |  |
| Embedment Depth                                         | h <sub>nom</sub> | in. (mm)     | 3 3/8 (86)                    | 4 5/8 (117) | 4 (102)                     | 5 3/4 (146) |  |  |  |  |  |
| Effective Embedment Depth                               | $h_{ef}$         | in. (mm)     | 2 3/4<br>(70)                 | 4<br>(102)  | 3 1/8<br>(79)               | 5<br>(127)  |  |  |  |  |  |
| Minimum Edge Distance                                   | C <sub>min</sub> | in. (mm)     | 6 (152)                       | 4 1/4 (108) | 5 (127)                     | 4 1/2 (114) |  |  |  |  |  |
| Minimum Spacing                                         | S <sub>min</sub> | in. (mm)     | 11 (279)                      | 4 1/4 (108) | 6 (152)                     | 5 (127)     |  |  |  |  |  |
| Minimum Concrete Thickness                              | $h_{min}$        | in. (mm)     | 6 (152)                       | 7 (178)     | 6 (152)                     | 8 1/2 (216) |  |  |  |  |  |

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

<sup>1</sup>The information presented in this table must be used in conjunction with the design requirements of ACI 318 Appendix D. The clearance must comply with applicable code requirements for the connected element.





#### FIGURE 1—ANCHOR

FIGURE 2—ANCHOR (INSTALLED)

| Length ID<br>marking on stud            | С     | D     | Е     | F     | G     | Н     | Ι     | J   | K   | L     | М     | Ν   | 0     | Р   | Q   | R  | S  | Т  | U  | V  | W  |
|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-----|-----|-------|-------|-----|-------|-----|-----|----|----|----|----|----|----|
| Length of anchor<br>$\min \ge$<br>(in.) | 2 1⁄2 | 3     | 3 1⁄2 | 4     | 4 1⁄2 | 5     | 5 1⁄2 | 6   | 6 ½ | 7     | 7 1⁄2 | 8   | 8 1⁄2 | 9   | 9 ½ | 10 | 11 | 12 | 13 | 14 | 15 |
| Length of anchor<br>max <<br>(in.)      | 3     | 3 1⁄2 | 4     | 4 1⁄2 | 5     | 5 1⁄2 | 6     | 6 ½ | 7   | 7 1⁄2 | 8     | 8 ½ | 9     | 9 ½ | 10  | 11 | 12 | 13 | 14 | 15 | 16 |

#### LENGTH IDENTIFICATION SYSTEM (CARBON STEEL AND STAINLESS STEEL ANCHORS)

|                                                                       | SVMDOL               | LINITO                             | NOMINAL ANCHOR DIAMETER        |             |                             |             |  |  |  |  |  |
|-----------------------------------------------------------------------|----------------------|------------------------------------|--------------------------------|-------------|-----------------------------|-------------|--|--|--|--|--|
| CHARACTERISTIC                                                        | SYMBOL               | UNITS                              | <sup>5</sup> / <sub>8</sub> ii | nch         | <sup>3</sup> / <sub>4</sub> | inch        |  |  |  |  |  |
| Anchor Category                                                       | 1,2 or 3             | -                                  |                                |             |                             |             |  |  |  |  |  |
| Embedment Depth                                                       | $h_{nom}$            | in. (mm)                           | 3 3/8 (86)                     | 4 5/8 (117) | 4 (102)                     | 5 3/4 (146) |  |  |  |  |  |
|                                                                       | Steel Strength in    | n Tension (ACl                     | ( <b>318 D.5.1</b> )           |             |                             |             |  |  |  |  |  |
| Specified Yield Strength (Carbon Steel)                               | $f_{ya}$             | psi (N/mm <sup>2</sup> )           | 50,000                         | (344)       | 50,00                       |             |  |  |  |  |  |
| Specified Ultimate Strength (Carbon Steel)                            | $f_{uta}$            | psi (N/mm <sup>2</sup> )           | 75,000                         | (517)       | 75,00                       | 00 (517)    |  |  |  |  |  |
| Effective Tensile Stress Area                                         | $A_{se}$             | in <sup>2</sup> (mm <sup>2</sup> ) | 0.1626                         | (104.9)     | 0.237                       | 6 (150.9)   |  |  |  |  |  |
| Tension Resistance of Steel (Carbon Steel)                            | N <sub>sa</sub>      | lbf (kN)                           | 12,195                         | (54.2)      | 17,82                       |             |  |  |  |  |  |
| Strength Reduction Factor-Steel Failure <sup>2</sup>                  | $\Phi_{sa}$          | -                                  | 0.7                            | 75          | (                           | ).75        |  |  |  |  |  |
| Conci                                                                 | rete Breakout Stro   | ength in Tensio                    | on (ACI 318 ]                  | D.5.2)      |                             |             |  |  |  |  |  |
| Effective Embedment Depth                                             | $h_{ef}$             | in. (mm)                           | 2 3/4 (70)                     | 4 (102)     | 3 1/8 (79)                  | ) 5 (127)   |  |  |  |  |  |
| Critical Edge Distance                                                | $c_{ac}$             | in. (mm)                           | 6                              | 7           | 7                           | 8           |  |  |  |  |  |
| Effectiveness Factor-Uncracked Concrete                               | kuncr                |                                    | 24(                            | 10)         | 24                          | 4(10)       |  |  |  |  |  |
| Strength Reduction Factor-Concrete<br>Breakout Failure <sup>3</sup>   | $arPsi_{cb}$         |                                    | 0.0                            | 55          | (                           | ).65        |  |  |  |  |  |
|                                                                       | Pull-Out Strength    | in Tension (A                      | CI 318 D.5.3)                  |             |                             |             |  |  |  |  |  |
| Pull-Out Resistance Uncracked Concrete $(f'_c = 2,500 \text{ psi})^5$ | N <sub>pn,uncr</sub> | lbf (kN)                           | N/                             | A           | 1                           | N/A         |  |  |  |  |  |
| Strength Reduction Factor-Pullout Failure <sup>6</sup>                | $arPsi_p$            | -                                  | 0.0                            | 65          | (                           |             |  |  |  |  |  |

# ANCHOR CHARACTERISTIC TENSION STRENGTH DESIGN INFORMATION<sup>1</sup>

For SI: 1 inch = 25.4mm, 1lbf = 4.45N, 1 lb/in = 0.175 N/mm, 1 psi = 0.00689 MPa = 0.00689 N/mm<sup>2</sup>, 1 in<sup>2</sup> = 645 mm<sup>2</sup>, 1 lb/in = 0.175 N/mm.

<sup>1</sup> The information presented in this table must be used in conjunction with the design requirements of ACI 318 Appendix D.

<sup>2</sup> The tabulated value of  $\Phi_{sa}$  applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used. If the load combinations of Section 1909.2 of the UBC or ACI 318 Appendix C are used, the appropriate value of  $\Phi_{sa}$  must be determined in accordance with ACI 318 D.4.5. The  $^{3}/_{8}$  inch,  $^{1}/_{2}$  inch and  $^{5}/_{8}$  inch diameter anchors are ductile steel elements as defined in ACI 318 D.1.

<sup>3</sup> The tabulated value of  $\Phi_{cb}$  applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are satisfied. For installations where complying supplementary reinforcement can be verified, the  $\Phi_{cb}$  factors described in ACI 318 D.4.4 for Condition A are allowed. If the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4 for Condition A are satisfied, the appropriate value of  $\Phi_{cb}$  must be determined in accordance with ACI 318 D.4.4(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of  $\Phi_{cb}$  must be determined in accordance with ACI 318 D.4.4(c).

<sup>4</sup> As described in Section 4.1.3 of this report, N/A (Not Applicable) denotes that pullout resistance is not critical and does not need to be considered. <sup>5</sup> The characteristic pull-out resistance for greater concrete compressive strengths may be increased by multiplying the tabular value by  $(f'_c/2,500)^{0.5}$ .

 $^{6}$  The tabulated value of  $\Phi_{p}$  or  $\Phi_{eq}$  applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are satisfied. Condition B applies where supplementary reinforcement is not provided or where pullout strength governs. For installations where complying supplementary reinforcement can be verified, the  $\Phi$  factors described in ACI 318 D.4.4 for Condition A are allowed. If the load combinations of ACI 318 Appendix C are used, appropriate value of  $\Phi$  must be determined in accordance with ACI 318 D.4.5.

|                                                                     | SVADOL          |                                    | NOM                           | NOMINAL ANCHOR DIAMETER |                             |                |   |  |  |  |
|---------------------------------------------------------------------|-----------------|------------------------------------|-------------------------------|-------------------------|-----------------------------|----------------|---|--|--|--|
| CHARACTERISTIC                                                      | SYMBOL          | UNITS                              | <sup>5</sup> / <sub>8</sub> i | nch                     | <sup>3</sup> / <sub>4</sub> | inch           |   |  |  |  |
| Anchor Category                                                     | 1,2 or 3        | -                                  |                               |                         |                             |                |   |  |  |  |
| Embedment Depth                                                     | $h_{nom}$       | in.                                | 3 3/8<br>(86)                 | 4 5/8<br>(117)          | 4<br>(102)                  | 5 3/4<br>(146) |   |  |  |  |
| Steel                                                               | Strength in Sho | ear ( ACI 318 D.6                  | <b>5.1</b> )                  |                         |                             |                |   |  |  |  |
| Specified Yield Strength for Shear (Carbon Steel)                   | $f_{ya}$        | psi (N/mm²)                        | 50,000                        | ) (344)                 | 50,00                       | 50,000 (344)   |   |  |  |  |
| Specified Ultimate Strength for Shear (Carbon Steel)                | $f_{uta}$       | psi (N/mm²)                        | 75,000                        | ) (517)                 | 75,00                       |                |   |  |  |  |
| Effective Shear Stress Area                                         | $A_{se}$        | in <sup>2</sup> (mm <sup>2</sup> ) | 0.1626                        | (104.9)                 | 0.237                       |                |   |  |  |  |
| Shear Resistance of Steel (Carbon Steel)                            | $V_{sa}$        | lbf (kN)                           | 8,170                         | (36.3)                  | 11.94                       | 40 (53.1)      |   |  |  |  |
| Strength Reduction Factor-Steel Failure <sup>2</sup>                | $arPsi_{sa}$    | -                                  | 0.                            | 65                      | (                           |                |   |  |  |  |
| Concrete B                                                          | reakout Strengt | h in Shear (ACI .                  | 318 D.6.2)                    |                         |                             |                | • |  |  |  |
| Nominal Diameter                                                    | $d_0$           | in.                                | 5/8 (                         | 15.9)                   | 3/4                         | 4 (19)         |   |  |  |  |
| Load Bearing Length of Anchor in Shear                              | $l_e$           | in.                                | 2 7/8                         | 3(73)                   | 3 1/                        | 2(88.9)        |   |  |  |  |
| Strength Reduction Factor-Concrete Breakout<br>Failure <sup>3</sup> | $arPsi_{cb}$    | -                                  | 0                             | .7                      |                             | 0.7            |   |  |  |  |
| Concrete I                                                          | Pryout Strength | in Shear (ACI 3                    | 18 D.6.3)                     |                         |                             |                |   |  |  |  |
| Coefficient for Pryout Strength                                     | $k_{cp}$        | -                                  | 2                             | 2                       |                             | 2              |   |  |  |  |
| Strength Reduction Factor-Concrete Pryout Failure <sup>4</sup>      | $arPsi_{cp}$    | -                                  | - 0.7                         |                         |                             | 0.7            |   |  |  |  |

# ANCHOR CHARACTERISTIC SHEAR STRENGTH DESIGN INFORMATION<sup>1</sup>

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.00689 MPa = 0.00689 N/mm<sup>2</sup>, 1 in<sup>2</sup> = 645 mm<sup>2</sup>.

<sup>1</sup> The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D.

<sup>2</sup> The tabulated value of  $\Phi_{sa}$  applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are satisfied. If the load combinations of ACI 318 Appendix C are used, the appropriate value of  $\Phi_{sa}$  must be determined in accordance with ACI 318 D.4.5. The  $\frac{3}{8}$  inch,  $\frac{1}{2}$  inch and  $\frac{5}{8}$  inch diameter anchors are ductile steel elements as defined in ACI 318 D.1.1.

<sup>3</sup> The tabulated value of  $\Phi_{cb}$  applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are satisfied. Condition B applies where supplementary reinforcement is not provided or where pryout strength governs. For installations where complying supplementary reinforcement can be verified, the  $\Phi$  factors described in ACI 318 D.4.4 for Condition A are allowed. If the load combinations of Section 1605.2.1 of the IBC or ACI 318 9.2 are used and the requirements of ACI 318 D.4.4 for Condition A are satisfied, the appropriate value of  $\Phi$  must be determined in accordance with ACI 318 D.4.4(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of  $\Phi$  must be determined in accordance with ACI 318 D.4.5.

<sup>4</sup> The tabulated value of  $\Phi_{cp}$  applies when both the load combinations of Section 1605.2.1 of the IBCor ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are satisfied. Condition B applies where supplementary reinforcement is not provided or where pryout strength governs. For installations where complying supplementary reinforcement can be verified, the  $\Phi$  factors described in ACI 318 D.4.4 for Condition A are allowed. If the load combinations of ACI 318 Appendix C the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.5.